

Science and Engineering Workforce How can we meet DoD's needs?

Defense Acquisition Performance Assessment Panel

Presented by

Dr. Bill Berry

Acting Deputy Under Secretary of Defense (Laboratories and Basic Sciences)

Overview

Scientists and Engineers Create Battlefield Advantage -the Supply of Clearable S&Es is in question

- Situation
- Goal
- Approach
- Summary & Requirements

Situation

As Technological Advantage decreases Battlefield Advantage decreases and the Threat of Technological Surprise increases

S&E Workforce Concerns

- Interest diminishing Supply diminishing Demand increasing (Trends and dominant opinions - no definitive data or predictive models)
- Public & Private concern & desire to engage abound
- No National strategy No lead entity No silver bullet
- DoD must satisfy its needs has authority & capacity to do so

Existing Efforts could achieve more

- Decentralized leadership & engagement
- Hundreds to Thousands of individual, independent, disconnected efforts nationally
- Alignment required for substantial & sustainable impact

Supply – Demand – Impact

STEM* Academia

- Reduced US Citizen performance, interest, enrollment, degrees
- Some Departments already sub-critical
- Full spectrum, comprehensive intervention required (K-20+)

Defense Industry (NDIA survey, Nov. 2005)

- "Perfect Storm" analogy is real & having impact
- Unsatisfied needs exist expected to continue and increase
 (Snapshot Survey: ~15% open SE requisitions contract let, need body to work)

DoD has Highest Exposure

- National Defense Workforce cannot be allowed to go sub-critical
- ~200,000 total Federal S&E's, ~45% work for DoD
 (~70%-90% in some Key disciplines)
- ~40+% in some S&E fields (in DoD) can retire Right Now!

World Technology Leadership

Agricultural Science

Biology & BioChem

Chemistry

Clinical Medicine

Computer Science

Ecology & Enviroment

Engineering

Geoscience

Immunology

Materials Science

Math

Microbiology

Molecular Bio & Genetics

Multidisciplinary

Neuroscience

Pharmacology

Physics

Plant & Animal Science

Psych & Psychiatry

Space Science

National Science Indicators, ISI 2002, Copyright retained

Goal

Ensure that DoD Science and Engineering Workforce needs are met

Comprehensive strategy:

- Institutionalize commitment and response within DoD
- Align all DoD STEM activities to increase ROI (K-20+)
- Identify and expand proven practices across DoD
- Engage enthusiastic stakeholders
- Collateral benefit a catalyst & model for National action

Three - Component Strategy

- Create human resource systems that are competitive and reward performance
- Engage and guide students and teachers through research, education, competitions, and practical experiences
- Invest in world-class facilities and equipment to exploit major evolving trends in science and engineering

S&E Workforce Some Current Efforts Across DoD

Pre-college (K-12)

- Materials World Modules (Ray Pawlicki Army)
- STARBASE (Ernie Gonzales OSD-RA)
- eCybermission (Kelly Stratchko Army)

<u>Undergraduate</u>

- Awards to Stimulate & Support Undergraduate Research Education (ASSURE) (with NSF; Koto White – AFOSR)
- Research Assistantships in microelectronics (with Semiconductor Industries Association) (Dan Radack – DARPA)
- Science, Mathematics and Research for Transformation (SMART)
 (K. Thompson DoD/Koto White AFOSR)
- Science, Mathematics and Research for Transformation (SMART)/National Defense Education Act (NDEA), Phase I (K. Thompson – DoD/Peter Purdue - NPS)

S&E Workforce Some Current Efforts Across DoD

Graduate

- National Defense Science & Engineering Graduate Fellowships (NDSEG)
- Naval Research Science and Technology for Americas Readiness (N-STAR – with NSF, Bob Kavetsky – Navy)
- SMART (Keith Thompson/Koto White AFOSR)
- SMART/NDEA (Keith Thompson/Peter Purdue-NPS)

SMART 05

Science Mathematics and Research for Transformation (SMART)

Congressional Add in FY05 Authorization & Appropriation

- Undergraduate/Graduate Scholarship Pilot Program
- US Citizens only (legislative limitation)
- Disciplines deemed critical to national defense
- 2 yrs of support (max effective limitation due to pilot status)
- Service Payback required
- \$ 2.5M

Implementation

- Internship required (outside of program)
- Mentorship required (outside of program)
- Post-degree work payback (set to 1-1 non-employee/3-1 employee)
- Participants: Army, Navy, Air Force, DARPA, DISA, DTRA
- 32 awards provided students begin in Fall Semester, 2005

SMART/NDEA 06

Science Mathematics and Research for Transformation (SMART)/ National Defense Education Act (NDEA) 2006, Phase I

SMART/NDEA 06 amendment enables comprehensive approach to education and training – <u>Shaped Workforce</u>

- SMART 05 is a valuable foundation (PE, execution & pgm components)
- Permanent program vs pilot
- Provides both Academic and Non-Academic elements (within program)
- Employee status while enrolled sought
- Expansion of skill/discipline/degree sought (language/associates)
- Will drive greater awareness of S&T workforce needs & planning
- Designed for DoD-wide S&T workforce utility (widening interest/support)
- Planned level expected to meet 10% of anticipated needs over 10 years
- Increased funding sought

Approach

Agency response is proportional to Leaders' attention

- Set STEM Workforce needs among Highest DoD Priorities
 - Eroding foundation weakens the structure
- Assign central responsibility, require results
 - Status/Action/Needs briefing to (Dep)SecDef every X months
 - Not withdrawing delegated authorities organizing them
- Bring all Components on board
 - All Components are authorized
- Align efforts
 - DoD is rich in Talent and Technology
 - Improve effectiveness of efforts
 - Partnerships are critical

Summary / Requirements

Ensuring the U.S. Science and Engineering workforce is an issue of National Security

Data, Trends and Reports substantiate concern & action

DoD Specific - Leadership Attention & Action

- (Dep)SecDef Publicity & Memorandum to:
 - Set clear priority and direction for DoD S&E Workforce & STEM Ed efforts
 - Assign responsibility & require engagement
 - Establish level of effort scope and scale
 - Identify Specific actions & follow up (Continue attention thru institutionalization)
 (Engage Components, Build Action Plan, Brief, Scale, Implement, Measure, Brief)

National Level

- DoD (with others) raise issue at Principals & Deputies level
- Cabinet level recognition & priority is mandatory
- No national strategy = No sustainability & Marginal Impact

BACKUP

Percentage of 24-year-olds with a Science or Engineering Degree

Finland		
Taiwan		11.1%
South Korea		10.9%
United Kingdom		11.7%
Japan	8.0%	%
Germany	6.6%	
Switzerland	6.5%	
United States	5.7%	

Source: Money Magazine, Oct 2004, pg 124

Degrees Awarded in Engineering

Bachelor in Engineering Degrees Awarded - 1999

U.S. and Worldwide Research Base Since WWII

Source: Report of the Defense Science Board Task Force on the Technology Capabilities of Non-DoD Providers; June 2000; Data provided by the Organization for Economic Cooperation and Development & National Science Foundation

DoD S&Es as % of Total Fed S&Es (

Source: NSF 05-304, Table 16 –Federal Scientists and Engineers 1998-2002, by agency and major occupational group: for 1998-2002 (OPM data)

	1997	1998	1999	2000	2001	2002
Total S&Es	46.6%	45.8%	44.2%	43.5%	43.1%	43.4%
All sci	28.0%	27.4%	26.1%	25.4%	25.6%	26.9%
Comp/Math sci	48.8%	47.6%	45.5%	43.9%	44.0%	45.3%
Life sci	12.2%	12.0%	11.4%	11.2%	11.0%	10.9%
Physical sci	28.2%	27.5%	26.7%	26.2%	26.1%	26.2%
Social sci	21.9%	21.4%	20.4%	20.4%	19.7%	19.6%
All eng	67.3%	67.0%	66.7%	66.4%	66.2%	66.7%
Aerospace	46.7%	45.2%	44.7%	43.6%	43.0%	42.8%
Chemical	61.3%	60.8%	62.3%	63.6%	65.7%	67.6%
Civil	62.1%	61.8%	61.8%	61.3%	60.6%	60.1%
EE&Comp	79.4%	79.4%	79.3%	79.1%	78.5%	79.1%
Industrial	83.8%	82.4%	81.1%	80.2%	79.4%	79.4%
Mechanical	88.2%	88.2%	88.2%	88.2%	88.4%	89.2%
Other eng	54.5%	54.7%	54.6%	55.1%	55.5%	55.9%

Published every 5 years - most current available as of 6/2005

DoD Civilian S&E's in 1985 & 2005

All DoD Civilians in S&E Occupational Series

	S&E Employees		50+		% ≥ 50	
	1985	2005	1985	2005	1985	2005
< BS	11276	7586	3593	2449	31.9%	32.3%
BS	67449	54673	15232	15390	22.6%	28.1%
MS	21973	22515	5955	9701	27.1%	43.1%
Ph.D	5594	5777	1864	3262	33.3%	56.5%
Total	106292	90551	26644	30802	25.1%	34.0%

Source: DMDC Data for Sept, 1985 & April 2005

Doctoral S&E Degrees by World Region

Physics PhD Degrees

Source: AMERICAN INSTITUTE of PHYSICS http://www.aip.org/statistics/trends/highlite/ed/figure6.htm http://www.aip.org/statistics/

Physical Review Submissions

Submissions to the Physical Review and Physical Review Letters 1983 - 2004

Kt mod-8/17/2005

Defense Industry Perspective

Quick-Look Presentation August 31, 2004

- Industry Demand Data
 - Survey responses highly indicative of a high demand/low supply market place with future negative trends for US Citizens
- Workforce Demand Thematic
 - Perfect Storm Analogy is real not just anecdotal
 - Focused on cleared and clearable engineers
- Employment Considerations
 - Priming the pump is only first step effective utilization and retention are critical!

Report on Aerospace Workforce March 26, 2004

- Immediately reverse the decline in scientifically and technologically trained US workforce...
- America's breakdown of intellectual and industrial capacity threatens national security and our capability to continue as a world leader
- Substantive, long-term US Gov. investment in SME education and training at the undergraduate and graduate levels

Initial DoD Critical Skills Focus

Proposed SMART/NDEA Phase 1 Relative to Other U.S. Sectors

A Model for Outreach/Integration

- HUB & Spoke Interface
 - HUB should be Strongest Presence
 - Easier Coordination
 - Local Meetings
- Comprehensive Delivery
- Critical Mass
- Greater Impact Training Teachers
- Improved ROI <u>For Everybody</u>

